skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Olive"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    ABSTRACT Self-organization is ubiquitous in biology, with viruses providing an excellent illustration of bioassemblies being much more than the sum of their parts. Following nature's lead, molecular self-assembly has emerged as a new synthetic strategy in the past 3 decades or so. Self-assembly approaches promise to generate complex supramolecular architectures having molecular weights of 0.5 to 100 MDa and collective properties determined by the interplay between structural organization and composition. However, biophysical methods specific to mesoscopic self-assembly, and presentations of the challenges they aim to overcome, remain underrepresented in the educational laboratory curriculum. We present here a simple but effective model for laboratory instruction that introduces students to the world of intermolecular forces and virus assembly, and to a cutting-edge technology, atomic force microscopy nanoindentation, which is able to measure the mechanical properties of single virus shells in vitro. In addition, the model illustrates the important idea that, at nanoscale, phenomena often have an inherent interdisciplinary character. 
    more » « less